Calculation For The Concentration In Ambient Air ## Conversion Equation: NO concentration (ppb) = $\alpha_{NO} \times (W_{NOx} - W_{NO2}) / t$ NO₂ concentration (ppb) = $\alpha_{NO2} \times W_{NO2} / t$ SO₂ concentration (ppb) = $\alpha_{SO2} \times W_{SO2} / t$ NH₃ concentration (ppb) = $\alpha_{NH3} \times W_{NH3} / t$ O₃ concentration (ppb) = $\alpha_{O3} \times W_{O3} / t$ ## Where: W Nox, W NO2: NO2 quantity (ng) collected in NOx and NO2 collection elements W _{SO2}: SO₂ quantity (ng) collected in SO₂ collection element W NH3: NH3 quantity (ng) collected in NH3 collection element W_{O3} :O₃ quantity (ng) converted from NO₃ quantity collected in O₃ element α_{NO} , α_{NO2} , α_{SO2} , α_{NH3} , α_{O3} : ppb concentration conversion coefficient (ppb·min / ng) normally at 20°C, R.H. 70% to be based. $$\alpha_{NO}$$ = 60, α_{NO2} = 56, α_{SO2} = 39.4, α_{NH3} = 43.8, α_{O3} = 46.2 These values were obtained by a theoretical calculation and an experimental basis using a glass chamber. These values are also changeable depending on temperature, humidity and exposure time. t : exposure time (min) ## Calculation Of Concentration Conversion Coefficients For NO And NO₂ In order to enhance the accuracy of Ogawa sampler measurement method α $_{NO}$ and α $_{NO2}$ can be calculated for a combination f temperature and relative humidity using the following formulas: $$\alpha_{NO} = \frac{10000}{(-0.78 \text{ X [P] X [RH]}) + 220}$$ $$\alpha_{NO2} = \frac{10000}{(0.677 \text{ X [P] X [RH]}) + (2.009 \text{ X [T]}) + 89.8}$$ [T]: Ambient temperature in degree Centigrade [RH] : Relative humidity % $$[P] = \frac{2P_N}{P_T + P_N}$$ P_N : 17.535 (water vapor pressure in mm Hg at 20 degC P_T : Vapor pressure of water at the ambient temperature [T] Calculation Of Concentration Conversion Coefficients For SO₂, NH₃ And O₃ $$\alpha_{SO2}$$ = 39.4 X (293 / (273 + T)) ^{1.83} [T]: Ambient temperature in degree Centigrade $$\alpha_{NH3}$$ = 43.8 X (293 / (273 + T)) ^{1.83} $$\alpha_{\rm O3}$$ = 46.2 X 10² X (293 / (273 + T)) $^{1.83}$ (9.94 X In (t) $-$ 6.53) [T]: Ambient temperature in degree Centigrade t : Exposure time (min)