Calculation For The Concentration In Ambient Air

Conversion Equation:

NO concentration (ppb) = $\alpha_{NO} \times (W_{NOx} - W_{NO2}) / t$ NO₂ concentration (ppb) = $\alpha_{NO2} \times W_{NO2} / t$ SO₂ concentration (ppb) = $\alpha_{SO2} \times W_{SO2} / t$ NH₃ concentration (ppb) = $\alpha_{NH3} \times W_{NH3} / t$ O₃ concentration (ppb) = $\alpha_{O3} \times W_{O3} / t$

Where:

W Nox, W NO2: NO2 quantity (ng) collected in NOx and NO2 collection elements

W _{SO2}: SO₂ quantity (ng) collected in SO₂ collection element

W NH3: NH3 quantity (ng) collected in NH3 collection element

 W_{O3} :O₃ quantity (ng) converted from NO₃ quantity collected in O₃ element α_{NO} , α_{NO2} , α_{SO2} , α_{NH3} , α_{O3} : ppb concentration conversion coefficient (ppb·min / ng) normally at 20°C, R.H. 70% to be based.

$$\alpha_{NO}$$
= 60, α_{NO2} = 56, α_{SO2} = 39.4, α_{NH3} = 43.8, α_{O3} = 46.2

These values were obtained by a theoretical calculation and an experimental basis using a glass chamber. These values are also changeable depending on temperature, humidity and exposure time.

t : exposure time (min)

Calculation Of Concentration Conversion Coefficients For NO And NO₂

In order to enhance the accuracy of Ogawa sampler measurement method

 α $_{NO}$ and α $_{NO2}$ can be calculated for a combination f temperature and relative humidity using the following formulas:

$$\alpha_{NO} = \frac{10000}{(-0.78 \text{ X [P] X [RH]}) + 220}$$

$$\alpha_{NO2} = \frac{10000}{(0.677 \text{ X [P] X [RH]}) + (2.009 \text{ X [T]}) + 89.8}$$

[T]: Ambient temperature in degree Centigrade

[RH] : Relative humidity %

$$[P] = \frac{2P_N}{P_T + P_N}$$

 P_N : 17.535 (water vapor pressure in mm Hg at 20 degC P_T : Vapor pressure of water at the ambient temperature [T]

Calculation Of Concentration Conversion Coefficients For SO₂, NH₃ And O₃

$$\alpha_{SO2}$$
= 39.4 X (293 / (273 + T)) ^{1.83}

[T]: Ambient temperature in degree Centigrade

$$\alpha_{NH3}$$
= 43.8 X (293 / (273 + T)) ^{1.83}

$$\alpha_{\rm O3}$$
 = 46.2 X 10² X (293 / (273 + T)) $^{1.83}$ (9.94 X In (t) $-$ 6.53)

[T]: Ambient temperature in degree Centigrade

t : Exposure time (min)