Advanced Monitoring Method for Air Environment by Ogawa Passive Sampler

Keiro Higuchi¹, D. R. Schaeffer^{2*}, Koichiro Hirano³

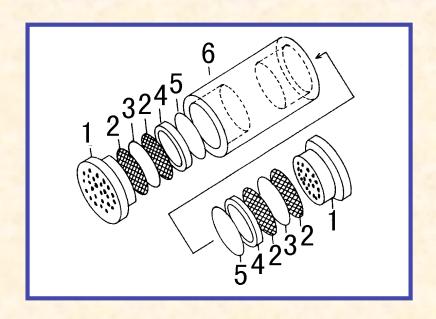
- ¹ Ogawa & Co., Ltd. 3-1-25-501 Hio-cho, Nada-ku, Kobe 657-0029 Japan
- ² Ogawa & Co., USA Inc. 1230 S. E. 7th Avenue, Pompano Beach, FL 33060 USA
- ³ Yokohama Environmental Science Research Institute 1-2-15 Takigashira, Isogo-ku, Yokohama 235-0012 Japan

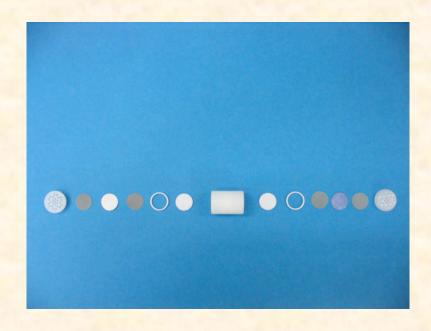
Corresponding author: dschaeff@ogawausa.com

Abstract 1st

The Ogawa Passive Sampler is one of the only known methods of passive simultaneous monitoring of more than two components in the air. The first advantage of Ogawa Sampler is to have two chambers with the same configuration where one can place two different kinds of collection filter pads.

In the case of simultaneous collection of NO and NO₂, The NO₂ collection filter coated with triethanolamine and the NOx collection filter coated with both triethenolamine and PTIO, which is specially prepared oxidation reagent of NO to NO₂, are set in each of two chambers respectively. NO₂ can be collected on the NO₂ filters. NO is oxidized to NO₂ by PTIO and then collected on the NOx filter together with NO₂. On the other hand, SO₂ is also collected on the NO₂ collection filter at the same time. Today, The Ogawa Sampler can collect and measure NO, NO₂, NOx, SO₂, NH₃ and O₃ in the air.


The second advantage of Ogawa Sampler is to be reusable countless times, only the pre-coated collection filter pad is expendable. The same sampler can be used for all above shown gasses. Consequently, Ogawa Sampler can be represented as one of the lowest cost effective device for accurate measurements of large scale or local pollution, as well as indoor pollution and personal exposure.


Abstract 2nd

The analytical procedures, after collecting, have been developed by spectrophotometric method and ion chromatographic method for each analysis. In order to carry out an advanced monitoring, an analytical procedure should be simple and high through-put, because the number of sampler used in a research program will be extremely large. Analytical method coupled with flow injection analysis (FIA) has been proved to be useful and versatile in many practical analyses, moreover, FIA technique is easy to apply to an automatic procedure. By coupling Ogawa passive sampling method with FIA technique, the performance of the monitoring for air environment could be extremely enhanced.

Today Ogawa Sampler is being used world-wide for the collection of NO, NO₂, NO₂, NO₃, SO₂, NH₃ and O₃. In Japan, this proposed monitoring method has been performed to carry out special programs for the research of the air environment. The results obtained have been successful and have been continued for a long time.

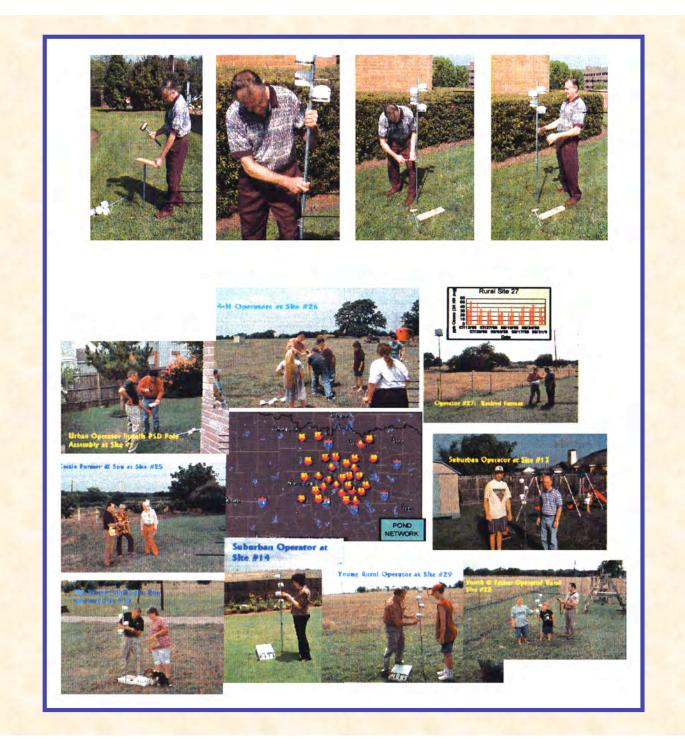
Structure of Ogawa Sampler

- 1.Diffuser end cap
- 2.Stainless screen
- 3.Collection filter (14.5mmφ)
- 4.Teflon ring
- 5.Teflon disk
- 6.Body(15mmi.d.,19mmo.d.,6mm length)

Set up of Ogawa Sampler

The shelter is used for protecting rain, sun shine and strong wind.

Beside the observation van


Personal exposure

View of general setting up

Beside automated monitoring site

Over all measurement procedure

Collection

Set Ogawa Sampler up the measuring site

Exposure and collection for 1~7 days

Extraction

Extraction into pure water

Analysis

Analysis by FIA, IC and colorimetry

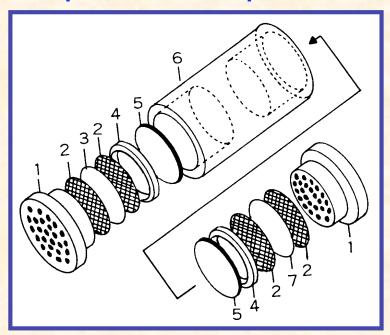
Calculation

Calculation by conversion equations

Absorption reagent, Analytical method and Analyte

NO₂ Triethanolamine, Colorimetry, Diazo-coupling reaction, NO₂

NO_x Triethanolamine +PTIO, Colorimetry, Diazo-coupling reaction, NO₂-


SO₂ Triethanolamine, Ion chromatography, SO₄2-

 NH_3 Citric Acid, Ion chromatography, NH_4^+

 O_3 Nitrite ion, Ion chromatography, NO_3

Simultaneous measurement of NO and NO₂

Preparation of Sampler

- 1.Diffuser end cap
- 2.Stainless screen
- 3.NO₂ collection filter (14.5mmφ)
- 4.Teflon ring
- 5.Teflon disk
- 6.Body
- 7.NOx collection filter (14.5mmφ)

NO₂ collection filter and NOx collection filter were placed in each of the two chambers of the samplers respectively.

Chemistry for oxidation of NO and analytical procedure

Oxidation of NO

Analytical procedure

Calculation for the concentration in ambient air

conversion equation:

```
NO concentration (ppb) = \alpha_{NO} \times (W_{NOx} - W_{NO2}) / t

NO<sub>2</sub> concentration (ppb) = \alpha_{NO2} \times W_{NO2} / t

SO<sub>2</sub> concentration (ppb) = \alpha_{SO2} \times W_{SO2} / t

NH<sub>3</sub> concentration (ppb) = \alpha_{NH3} \times W_{NH3} / t

O<sub>3</sub> concentration (ppb) = \alpha_{O3} \times W_{O3} / t

Where:
```

W_{NOx}, W_{NO2}: NO₂ quantity (ng) collected in NOx and NO₂ collection elements

W so2: SO2 quantity (ng) collected in SO2 collection element

W_{NH3}: NH₃ quantity (ng) collected in NH₃ collection element

W₀₃:O₃ quantity (ng) converted from NO₃ quantity collected in O₃ element

 α_{NO} , α_{NO2} , α_{SO2} , α_{NH3} , α_{O3} : ppb concentration conversion coefficient (ppb-min / ng)

normally at 20°C, R.H. 70% to be based.

$$\alpha_{NO} = 60$$
, $\alpha_{NO2} = 56$, $\alpha_{SO2} = 39.4$, $\alpha_{NH3} = 43.8$, $\alpha_{O3} = 46.2$

There values were obtained by a theoretical calculation and an experimental basis using a glass chamber. There are also changeable depending on temperature, humidity and exposure time.

t: exposure time (min)

Calculation of concentration conversion coefficients for NO and NO₂

In order to enhance the accuracy of Ogawa sampler measurement method

 α_{NO} and α_{NO2} can be calculated for a combination f temperature and relative humidity using the following formulas

$$\alpha_{NO} = \frac{10000}{(-0.78 \text{ X [P] X [RH]}) + 220}$$

$$\alpha_{NO2} = \frac{10000}{(0.677 \text{ X [P] X [RH]}) + (2.009 \text{ X [T]}) + 89.8}$$

[T]: Ambient temperature in degree Centigrade

[RH]: Relative humidity %

$$[P] = \begin{cases} \frac{2P_N}{P_T + P_N} \end{cases}^{2/3}$$

P_N: 17.535 (water vapor pressure in mm Hg at 20 degC

P_T: Vapor pressure of water at the ambient temperature [T]

Calculation of concentration conversion coefficients for SO₂, NH₃ and O₃

$$\alpha_{SO2} = 39.4 \text{ X} (293 / (273 + T))^{1.83}$$

[T]: Ambient temperature in degree Centigrade

$$\alpha_{NH3} = 43.8 \text{ X} (293/(273 + T))^{1.83}$$

[T]: Ambient temperature in degree Centigrade

$$\alpha_{03} = 46.2 \times 10^2 \times (293 / (273 + T))^{1.83} / (9.94 \times In (t) - 6.53)$$

[T]: Ambient temperature in degree Centigrade

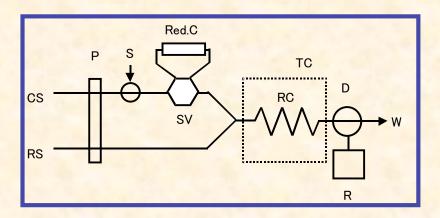
t : Exposure time (min)

What is the lowest detectable range?

	NO ₂	NOx	SO ₂	O ₃
24 hrs exposure	2.3 ppb	2.3 ppb	3.8 ppb	2.7 ppb
168 hrs exposure	0.32 ppb	0.32 ppb	0.54 ppb	0.39 ppb

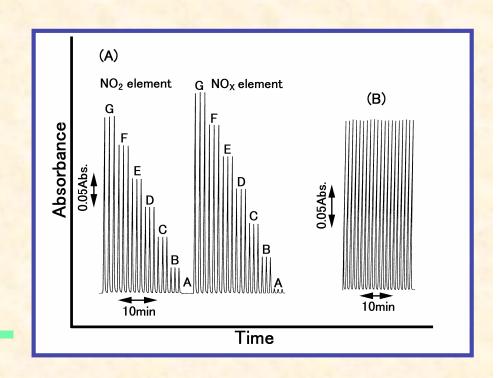
What is the upper detectable range?

	NO ₂	NOx	SO ₂	O ₃
24 hrs exposure	25 ppm	25 ppm	25 ppm	0.8 ppm
168 hrs exposure	3.6 ppm	3.6 ppm	3.6 ppm	0.11 ppm

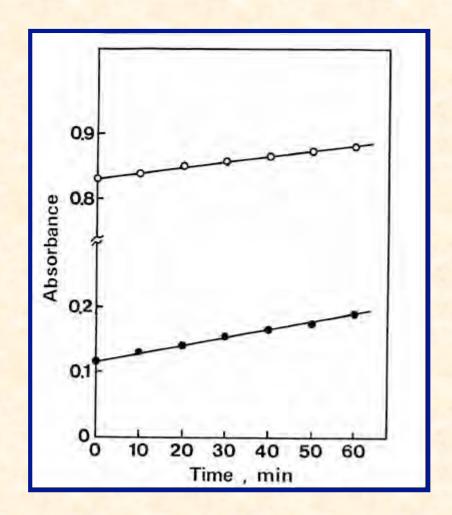

Please note that all of the above ranges depend on the sensitivity of the analyzing instruments, quality of reagents and quality of environments.

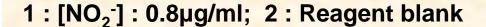
Improvement to Advanced Monitoring System

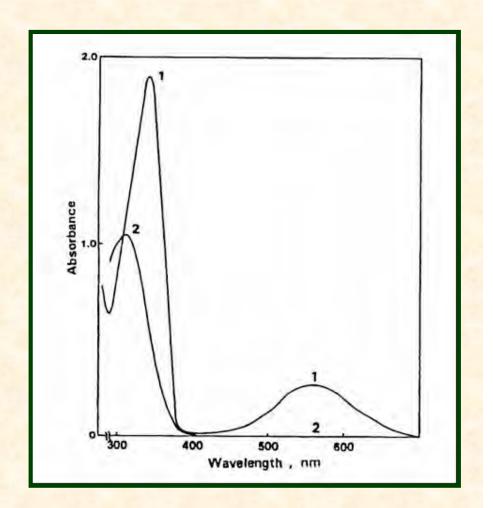
An analytical procedure should be <u>simple</u> and <u>high through-put</u>, because the number of sampler used in a research program will be extremely large.


Flow Injection Analysis (FIA) has been proved to be useful and versatile in many practical analyses, moreover, FIA technique is easy to apply to an automatic procedure.

FIA diagram for nitrite ion equipped with copperized cadmium

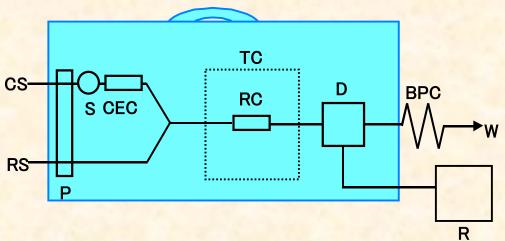

CS: carrier solution (EDTA + NH₄CI), RS: reagent solution (Sulfanilamide + N-1-Naphthylethylenediamine), P: micro pump (1.0ml/min), S: sample injector (100µI), SV: six-way rotary valve, Red.C: Cd/Cu reduction column (2mmi.d.×10cm), TC: temperature controlled air bath(40°C), RC: reaction coil (0.5mm i.d.×2m), D: detector (540nm), R: recorder, W: waste


Flow signals for calibration graphs and the reproducibility test


(A) [NO₂-]:μg/ml A; 0, B; 0.4, C; 0.8, D; 1.2, E; 1.6, F; 2.0, G; 2.4

(B) NOx sampling element [NO₂-]:1.2μg/ml RSD=0.35%

Effect of PTIO on the absorbance for NOx analysis after adding the color producing reagents


Absorption spectra of PTIO solution

1: PTIO solution,

2: after reduction by Cd/Cu column

Flow diagram for the determination of SO₂

Flow signals for calibration graphs of SO₄²⁻

CS:carrier solution (H₂O)

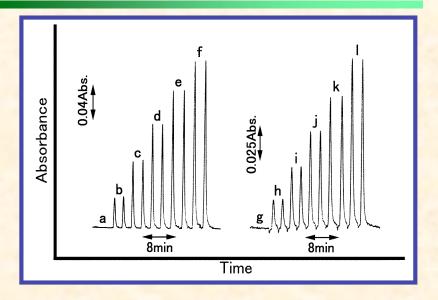
RS:reagent solution(DimethylsulfonazoⅢ-

Bacomplex)

P:double-plunger micro pump (1.0ml/min)

CEC:cation exchange resin column

(2mmi.d.×10cm)


RC:reactor column (BaSO₄-immobilized glass beads or crushed BaSO₄, 2mmi.d.×10cm)

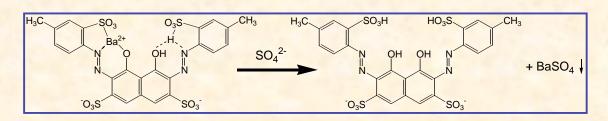
TC:temperature controlled air bath(35°C)

D:detector(LED:660nm,interferencefilter:660nm)

BPC:back pressure coil (0.25mmi.d.×2m)

R:recorder W:waste

Sample volume 50µl

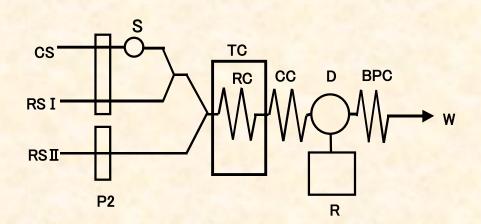

 $[SO_4^{2-}]$ (µg/ml)

a:0, b:2, c:4, d:6, e:8, f:10

Sample volume 200µl

 $[SO_4^2]$ (µg/ml)

g:0, h:0.4, i:0.8, j:1.2, k:1.6, l:2.0



Chemistry for the detection of ammonium ion

$$NH_3 + CIO^- \longrightarrow NH_2CI + OH^-$$

NH₂Cl + 2
$$\longrightarrow$$
 OH + 2ClO \longrightarrow OH + 3HCl + 2OH COOH

Flow diagram for ammonium ion

CS : Carrier solution (H₂O)

RSI : Reagent solution

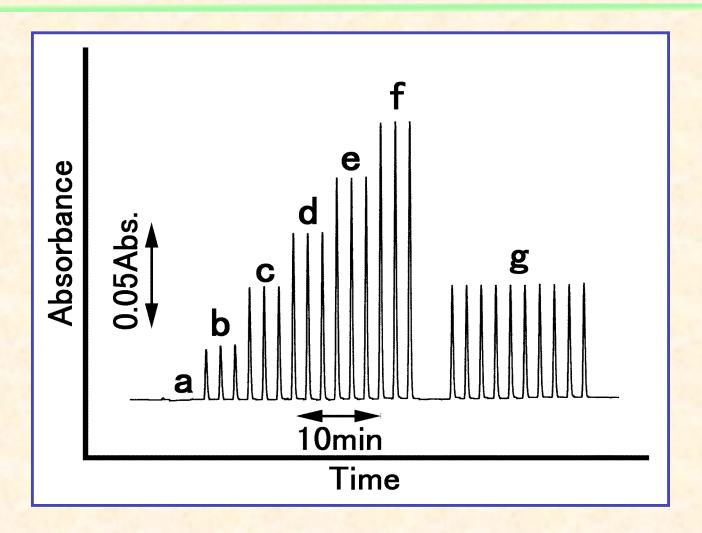
(Sodium salycilate+nitrprusside)

RSII: Reagent solution II(NaClO)

P₁, P₂: Double-plunger pump : Sample injector (100µl)

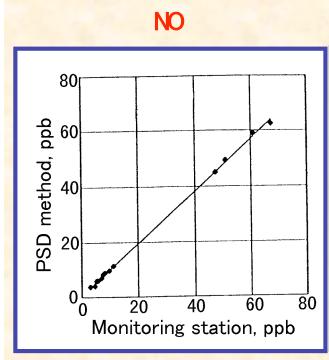
TC: Reactor (50°C)

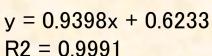
RC : Reaction coil (0.5 mm i.d.×2 m)
CC : Cooling coil (0.5 mm i.d.×1 m)

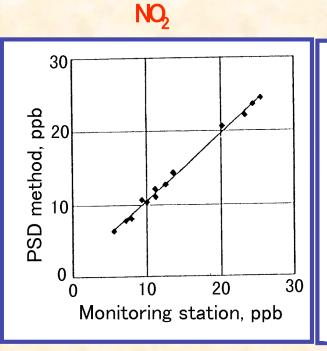

D : Detector (660 nm)

Recorder

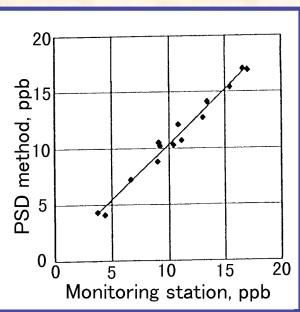
BPC: Back-pressure coil (0.25 mm i.d.×2 m)

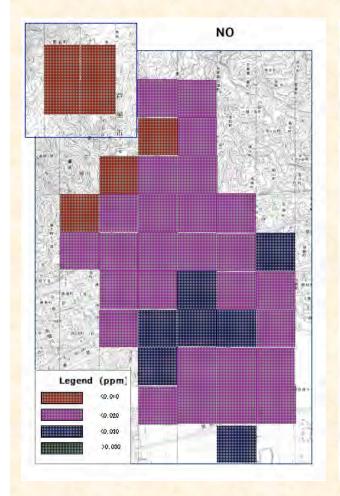

w : Waste


Flow signals for calibration curve and repeatability test

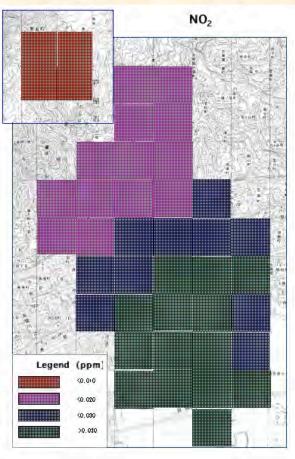


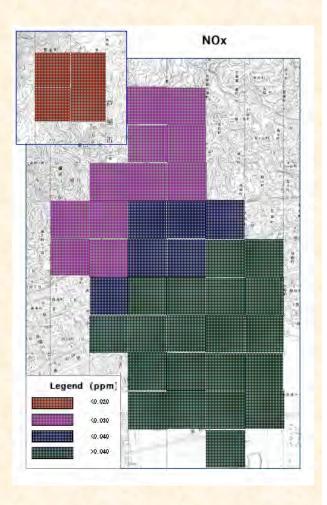
Calibration curve (a \sim f) [N-NH₄+] / ppm a, 0; b, 0.2; c, 0.4; d, 0.6; e, 0.8; f, 1.0 Repeatability test (g) [N-NH₄+] : 0.4ppm RSD=0.26% (n=10)


Correlation between the results obtained by Ogawa Sampler and automatic monitoring station


$$y = 0.909x + 1.5029$$

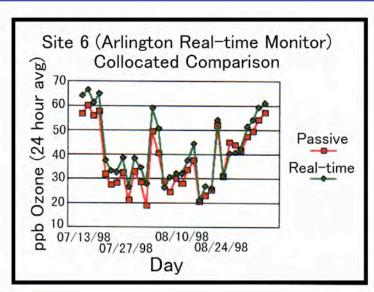
R2 = 0.9936

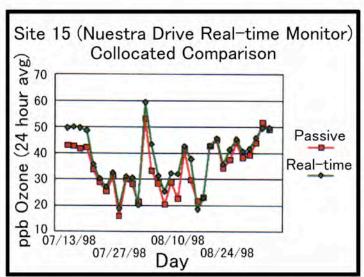


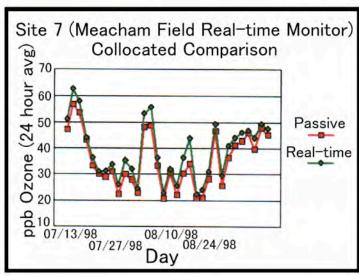

SO,

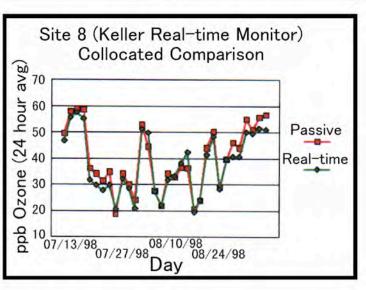
$$y = 0.9816x + 0.5116$$

R2 = 0.9782


Distribution Map of Nitric Oxides in the air







Correlation of Ozone between the results obtained by Ogawa Sampler and automatic monitoring station

